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Abstract. We have investigated the influence of a weak radial temperature gradient in a wide gap and large
aspect ratio Couette-Taylor system. The inner cylinder is rotating and can be heated or cooled, the outer
cylinder is at rest and immersed in a large thermal bath. We found that a radial temperature gradient
destabilizes the Couette flow leading to a pattern of traveling helicoidal vortices occurring only near the
bottom of the system. The size of the pattern increases as the rotation frequency of the cylinder is increased.
We have characterized the spatiotemporal properties of the pattern and we have shown that it behaves as a
wall mode found in the simulation of the complex Ginzburg-Landau equation with homogeneous boundary
conditions.

PACS. 47.20.Qr Centrifugal instabilities (e.g., Taylor-Couette flow) – 47.50.Qj Instabilities – 47.54.-r
Pattern selection; pattern formation – 82.40. Pattern formation in flow and heat transfer

1 Introduction

The stability of the circular Couette flow in a vertical
cylindrical annulus submitted to a radial temperature gra-
dient has been the subject of large number of theoretical,
experimental and numerical studies in last decades [1–3].
This problem occurs in many industrial applications such
as electrical motors [4,5] or barrel reactors used in the
chemical vapor deposition [6]. Moreover, this flow system
occurs in geophysical applications with oceanic or atmo-
spheric circulation [7]. Among the few experimental stud-
ies, Snyder and Karlsson [8] have performed investigations
in a tall vertical annulus with a small gap to understand
the influence of radial temperature heating on the stability
of the flow for three different Prandtl numbers. They have
observed that small positive and negative radial temper-
ature gradient stabilizes the base flow. For larger temper-
ature gradient, the flow is destabilized and spiral vortices
were observed. In their experiment, Sorour and Coney [9]
have found that the imposed radial temperature gradi-
ent destabilizes the base flow and the obtained pattern
is composed of stationary axisymmetric toroidal vortices.
Although they did not provide the values of the Prandtl
number for the used oils, their values were given by Ali
and Weidman [10], Pr ∈ {300; 860}. Ball et al. [7] have
shown different successive regimes for system with a mod-
erate aspect ratio for air. The previous studies have under-
lined the importance and the complexity of the problem

a e-mail: mutabazi@univ-lehavre.fr

depending both on the nature of the fluid and the size of
the cavity. As the previous studies were limited to visual-
ization, the present work provides pictures of the pattern
and more quantitative data (wavenumber, frequency, am-
plitude) using the analysis of space-time diagrams. The
chosen aspect ratio is very large to avoid boundary effects.
We have worked with the same range of temperature gra-
dient values as Snyder and Karlsson or Sorour and Coney,
but the range of Grashof number values is larger because
of a larger gap size. We have characterized in detail the pri-
mary bifurcation for small values of the Grashof number.
We have found significantly different results from previous
studies; in particular, we have observed the wall mode that
was predicted by Tobias et al. [11] in numerical simula-
tions of 1-d CGLE (complex Ginzburg-Landau equation)
with homogeneous boundary conditions. Snyder et al. [12]
have provided a large work on the Taylor Couette system
in different conditions, particularly with a through axial
flow. They invoked a parallel between these two behav-
iors. We have pursued these observations to compare our
results with the recent experiments of Tsameret et al. [13–
16] and Babcock et al. [17,18]. Although these works were
focused on the absolute and convective instabilities, sev-
eral similar behaviors are observable. The paper is orga-
nized as follows. The problem formulation is presented in
Section 2. The experimental setup and the results are pre-
sented respectively in Sections 3 and 4. In Section 5, the
results are discussed and finally the last section contains
the conclusion.

http://dx.doi.org/10.1140/epjb/e2008-00105-2
http://www.epj.org
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2 Theoretical background

A Newtonian fluid is confined between an inner cylinder
of radius a that has an angular velocity Ωi and an outer
fixed cylinder of radius b. The two cylinders of length
L are maintained at the temperature T1 and T2 respec-
tively. Equations governing the motion of the fluid are the
Navier-Stokes equations, the continuity equation and the
energy conservation for the velocity v, the pressure p and
the temperature T [19]. The Boussinesq approximation is
used. The temperature difference between the two cylin-
ders produces a radial stratification of density inducing
a torque that generates a large vertical convection cell.
The flow is ascending near the hot surface and descend-
ing near the cool one. The rotation of the inner cylinder
induces a circular Couette flow with a radial stratification
of the kinetic momentum. Far from the top and bottom
boundaries, the base flow is stationary and has two veloc-
ity components: an azimuthal velocity component due to
the rotation [1]

Vθ(r̄) = Ar̄ + B/r̄ (1)

with

r̄ =
r

d
, A = −Ωiaη

1 + η
, B =

Ωia

(1 − η)2
, η =

a

b

and an axial component induced by the radial temperature
gradient [10]

W (r̄) = WaF (η, r̄) , Wa =
gαδTd2

ν
(2)

with
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where

C =
1

16(1 − η2)

D =
(1 − η2)(1 − 3η2) − 4η4ln η

(1 − η2)2 + (1 − η4)ln η
.

The function F (η, r̄) does not depend on the radial tem-
perature gradient. It possesses a nodal surface r = r0(η)
and it reaches the maximum for xmax(η) and the minimum
for xmin(η) where we have set x = (r−a)/d (Fig. 1). Some
of these values are given in Table 1 for few experimental
systems for comparison.

The temperature field T depends only on the radial
coordinate r̄ as follows (Fig. 2):

Θ(r̄) =
T (r̄) − T2

(T1 − T2)
=

ln[(1 − η)r̄]
ln η

(3)
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Fig. 1. Radial profile of the dimensionless axial velocity F (η, r̄)
for η = 0.8.
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Fig. 2. Radial profile of the temperature θ(x) for η = 0.8.

The flow in this system is controlled by five parameters.
Two geometrical parameters, i.e. the radius ratio η and the
aspect ratio Γ = L/(b−a), and three physical parameters,
i.e. the Taylor number Ta, the Grashof number Gr and the
Prandtl number Pr. The Taylor number is given by the
ratio of the viscous diffusion time τν = d2/ν to the char-
acteristic time of the centrifugal force τc = Ω−1(d/a)1/2,
Ta = τν/τc = (Ωad/ν)

√
d/a. The Grashof number, re-

lated to buoyancy effects, is the squared ratio of the vis-
cous diffusion time to the characteristic time related to
buoyancy τa =

√
d/gαδT , Gr = τ2

ν /τ2
a = gαδTd3/ν2.
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Table 1. Typical values of the function F (η, r̄) for different experimental studies.

Authors η d (cm) xmin xmax 103Fmin 103Fmax

Snyder et al. [8] 0.958 0.267 0.793 0.210 −7.9 8.1

Sorour et al. [9]
0.911 1.02 0.786 0.209 −7.8 8.2

0.948 0.6 0.788 0.211 −7.9 8.2

Ball et al. [7]

0.437 1.611 0.787 0.204 −6.4 9.2

0.565 0.964 0.787 0.207 −6.9 8.9

0.656 0.656 0.787 0.208 −7.2 8.7

This study 0.8 0.5 0.788 0.215 −7.6 8.4

The Prandtl number is the ratio of thermal diffusion time
to viscous diffusion time: Pr = τκ/τν = ν/κ.

3 Experimental setup

3.1 Description

The experimental setup (Fig. 3) is composed of two con-
centric vertical cylinders of length L = 57 cm and thick-
ness e = 0.5 cm. The working liquid, demineralized water,
is confined between the inner cylinder of radius a = 2 cm
and the outer cylinder of radius b = 2.5 cm. The gap
size is d = 0.5 cm. The system is characterized by the
radii ratio η = 0.8 and the aspect ratio Γ = 114. The
inner cylinder was driven by a step motor and rotated
with angular frequency Ωi, the outer cylinder was held
fixed. Stationary horizontal end plates were used to seal
the annulus. The system was surrounded by a large cylin-
drical glass tank of radius c = 5 cm which ensured the
thermal insulation from external environment. The tem-
peratures of inner and outer cylinders were controlled by
two independent thermal baths. A constant temperature
water circulated at flow rate of 250 cm3/s inside the inner
cylinder and between the peripheral cylinders at temper-
ature values T1 and T2 respectively. We have checked the
absence of the vertical temperature gradient using two
thermal sensors inserted at the entry (bottom) and the
exit (top) of the experiment. The temperature gradient
δT acting on the annulus was obtained by considering the
conductivity of aluminium of inner cylinder, of water in
the gap and of glass of the outer cylinder and it was given
by δT = 0.54 (T1 − T2) [20]. The accuracy of the angular
velocity of the inner cylinder was 1%.

3.2 Visualization

The visualization was achieved by seeding the flow with a
solution containing 2% by volume of Kalliroscope AQ 1000
concentrate 1 [21], a suspension of 1–2% of microscopic
reflective and anisotropic platelets that orient themselves

1 Kalliroscope Corporation, 264 Main Street, PO Box 60,
Groton, MA 01450, USA. Kalliroscope.

Fig. 3. Schematic representation of the experimental setup.

parallel to the shear. A monochromatic He-Ne laser beam
was transformed by a cylindrical lens into a plane ver-
tical beam parallel to the cylinder axis and allowed for
the visualization of a vertical cross section of the flow. A
linear CCD camera recorded at regular time intervals the
intensity distribution of the light reflected by Kalliroscope
flakes along the cross section of 55 cm of the height. The
intensity was sampled into 256 grey levels. The recorded
lines were superimposed along the time axis to form a
space time diagram. Two plane mirrors surrounded the ex-
perimental apparatus in order to visualize the whole flow
and to determine the inclination angle of vortices [22,23].

3.3 Complex demodulation

Analysis of space-time diagrams allows for identification of
transition scenarios between the different flow regimes. In
order to obtain more quantitative information, the stan-
dard demodulation technique was applied to the space–
time diagrams I(z, t). A Fourier transform, a space and
time wide band-pass filtering of the data around the pos-
itive fundamental frequency ω0 and wavenumber k0 in
Fourier space and then the inverse Fourier transform were
performed [24]. The intensity I(z, t) was written in terms
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of a slowly varying complex field I(z, t) = |A(z, t)|eiφ(z,t)

where |A(z, t)| is the modulus of the signal amplitude, and
φ its phase. Spatial and temporal derivatives of the phase
φ give the local instantaneous wavenumbers k = ∂φ/∂z
and frequencies ω = −∂φ/∂t of the pattern. In the fol-
lowing, we will use the dimensionless wavenumber and
frequency defined as follows q = kd, f = d2ω/2πν. The
lengths are expressed in units of d (except the pattern
lengths that will be scaled by the working length L).

3.4 Protocol

At the beginning of experiments, a radial temperature
gradient was imposed and maintained constant during all
the experiment. The outer cylinder was maintained at the
temperature T2 = 30 ◦C and we can heat or cool the inner
cylinder. As soon as a small radial temperature gradient
was imposed on the liquid, the convection cell was created:
fluid particles moved upwards near the heated cylindrical
wall and moved downwards near the cooled one. After
one hour, we gradually increased the angular velocity of
the inner cylinder from the rest. This rotation is always
in the positive direction (counterclockwise) in this work,
although we have observed the same nature of patterns
for negative direction. For each increase of the rotational
speed, a space-time diagram and a movie of the whole flow
were recorded. For each step, we have waited a minimum
of twenty minutes before recording a space-time diagram
and before increasing the angular velocity. This time step
is quite enough to avoid transient effects since the viscous
diffusion time across the gap is about 20 s, the character-
istic time related to buoyancy is smaller than 2 s and the
centrifugal time is about 1 min.

4 Results

The working fluid (deionized water) in the range of values
of the experiment temperature has Pr = 5.5± 0.2. Based
on the stability analysis performed by Walowit et al. [25],
the critical Taylor number for an infinite annulus in the
isothermal case is Tath

c = 47.37 for η = 0.8. We have
found, for our experimental system (Γ = 114, η = 0.8),
the instability threshold is Tac = 48. Below this value, the
base flow is circular Couette flow with a velocity profile
given by equation (1) away from the end plates. Above
Tac, the flow is composed of axisymmetric stationary toro-
idal vortices i.e. Taylor vortices with the wavenumber q =
3.12. With an applied temperature gradient, the critical
parameters and the nature of the pattern changed.

4.1 Description of pattern

For Gr �= 0 and at a critical value Tac of the Taylor num-
ber, the base flow is destabilized and a pattern, composed
of non axisymmetric traveling vortices, appears at the bot-
tom of the system. Figures 4a shows a piece of the pat-
tern and the corresponding space-time diagram obtained

(a)

 

(b)
 

(c)

Fig. 4. Pictures and space-time diagram representing the spi-
ral vortex flow for Gr = 390 (a) at the threshold for Tac = 27.5,
(b) for Ta∗ = 38.5 and (c) for Gr = −420 and Ta∗ = 37.

for Gr = 390 and Tac = 27.5. This state is not transient,
the pattern size remains constant in time. This Hopf bi-
furcation is supercritical, no hysteresis effects have been
observed when increasing and decreasing the Taylor num-
ber near the threshold.

When Ta increases, the size Lp of the pattern 2 in-
creases, the pattern fills the whole system (Fig. 4b) at the
value Ta∗ of the Taylor number. Thus between Tac and
Ta∗, there is a coexistence of two states: the laminar base
flow and the pattern of traveling vortices. These two states
are separated by a front whose positions zf depends on Ta.
Figure 4b shows a pattern with a definite inclination with
respect to the plane perpendicular to the cylinder axis,
and a propagation from the top to the bottom of the

2 We have defined the pattern size as the distance between
two points where the amplitude is one third of the maximum.
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Fig. 6. Variation of the critical Taylor number vs. the Grashof
number. The symbols • and × correspond respectively to the
value of the Taylor number at the threshold and to that for
which the spiral vortex flow fills the whole annulus.

cavity. When we changed either the sign of the temper-
ature gradient or the sense of rotation, the inclination of
the pattern changed too (Fig. 4c). In order to conserve the
pattern inclination, we needed to change simultaneously
the sign of both the rotation and temperature gradient.

Figure 5 displays the variation of the pattern size Lp

as a function of the Taylor number for each value of Gr.
Figure 6 shows the critical values Tac and Ta∗ as func-

tion of Gr. The critical value of the Taylor number de-
creases with the Grashof number, i.e. the presence of a ra-
dial temperature gradient destabilizes the flow. The spiral
pattern remains stable until it pertains a bifurcation to
wavy spiral vortex flow, the later exists in a small range
of Ta and then becomes wavy vortex flow which is similar
to that observed in the isothermal case [2]. For Gr > 965,
the pattern occurs in the middle of the system with a finite
size Lp ≈ L. The corresponding results will be discussed
in another work.

In order to describe the space-time characteristics of
the pattern, we have extracted the axial wavenumber and
frequency from space-time diagrams. Figures 7 and 8 rep-
resent the variation of the wavenumber q and frequency f
as functions of the Grashof number Gr. We have found
that the axial wavenumber decreases with the Grashof
number, i.e. the radial heating increases the axial vortex
size, which remains larger than that of the Taylor vortices.
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Fig. 7. Variation of the critical wavenumber vs. the Grashof
number. At threshold, the wavenumber of the pattern is rep-
resented by the symbol •, then by − for increasing Ta. The
symbol × corresponds to the wavenumber when the spiral is
present in the whole system.
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Fig. 8. Variation of the frequency with The Grashof number.
At threshold, the frequency of the pattern is represented by
the symbol •, then by − for increasing Ta. The symbol ×
corresponds to the frequency when the spiral is present in the
whole system.

The pattern frequency increases with the control param-
eter, i.e. the radial heating increases the vortex phase ve-
locity.

We have also observed that the azimuthal wavenumber
decreases with the Taylor number (Fig. 9). The azimuthal
wavenumber is proportional to the inclination of the vor-
tices m = 2π(a+b)λ−1 tan θ, where θ is the inclination an-
gle of vortices, λ = 2πd/q is the axial wavelength. For large
values of the Grashof number, the pattern is very inclined
(m = 9 or θ = 39.8◦) at the onset and for small Grashof
number, the spiral vortex flow is weakly inclined (m = 1
or θ = 2◦). For the same value of the Taylor number,
the azimuthal wavenumber also depends on the Grashof
number. Moreover, the ratio between frequency and az-
imuthal wavenumber, i.e. the azimuthal phase speed cθ,
increases with the Taylor number Ta whatever the value
of the Grashof number Gr is as shown Figure 10.

The amplitude profile of the pattern 〈A(z)〉 obtained
from demodulation and averaged in time is plotted in Fig-
ure 11 for a fixed value of Gr and different values of the
reduced Taylor number µ = (Ta − Tac(Gr))/Tac(Gr).
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Time-averaged profiles of the frequency and the axial wav-
enumber are plotted in Figures 12 and 13.
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Fig. 12. Time-averaged profiles of the wavenumber for Gr =
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5 Discussion

5.1 Pattern near the bottom

The occurrence of the pattern near the bottom of the sys-
tem independently of the sign of the temperature gradient
and of the rotation may be due to the modification of the
Ekman zones near the end plates. In fact, near these ends,
the large convection cell induced by the radial tempera-
ture gradient introduces an extra radial velocity compo-
nent and an axial velocity component that does not exist
in the isothermal case. Numerical simulations of Kuo et al.
for η = 0.5 [26] and Yang for η = 0.8 [27] have shown that
the flow near the top end is different from that of the bot-
tom. They have shown that at the top end, there exists
a small corner vortex which may be the source of excita-
tion of the traveling waves that amplify along the axial
direction until they saturate near the bottom. In the ex-
periment, it was difficult to visualize this corner vortex
because of its weakness for the range of values of working
parameters.
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We may mention that this pattern is not induced by
any inhomogeneities of the experimental setup: in fact,
the radial heat flux across the gap is very weak (Nu ∼ 2)
compared to the vertical heat flux in the inner tube and
between peripheral cylinders for which Nu1 = 82 and
Nu2 = 67 respectively. So there is no vertical temper-
ature gradient between the bottom and the top of the
experimental setup.

5.2 Spiral vortices

The Couette-Taylor system with a radial temperature gra-
dient has been subject of few experiments in systems with
different geometrical parameters (η, Γ ). We have gathered
the characteristics of these experiments in Table 2 and
we have plotted the critical values of these two experi-
ments together with ours in the plane (Gr∗, T a) where
Gr∗ = sgn Gr ln (Gr sgn Gr) in Figure 14. Snyder and
Karlsson [8] found that for a small temperature gradient,
the Couette flow was stabilized and the first instability
gave rise to stationary Taylor vortices while a larger tem-
perature gradient destabilizes the Couette flow leading to
a spiral vortex pattern. Sorour and Coney [9] found that
Couette flow was destabilized and a traveling vortex flow
was observed. None of these authors had mentioned the
occurrence of vortices near the bottom of the flow sys-
tem although all the experiments have been performed in
large aspect ratio systems. It is possible that the thresh-
old was chosen to correspond to the state when the pat-
tern filled the whole system. The Grashof values in Snyder
and Karlsson’s experiment are smaller than ours for the
same temperature difference intervals because of smaller
value of their gap. Sorour and Coney used oils with high
viscosity (high Prandtl number) so giving small Grashof
numbers. The difference in the critical values of Ta may
also be due to the different values of the radius ratio,
such a difference exists also in the isothermal case. While
our results showed that the pattern wavenumber varied
with the temperature gradient, Snyder and Karlsson re-
ported that the wavenumber was almost independent of
the latter. The inclination of vortices in closed flows im-
plies both propagation in axial and azimuthal directions:
cz = cθ tan θ, where θ is the inclination angle. We have
found that the axial phase velocity of spiral vortices was
given by cz = 2.9 × 10−3Wa ≈ Wmax/3, this value is al-
most independent of Ta. Snyder and Karlsson found that
the axial phase velocity was comparable with the maxi-
mum of the axial velocity cz ∼ Wmax. The spiral pattern
rotates in the azimuthal direction with an angular velocity
(ω/m) which is determined by the inner cylinder rotation.
In fact, it has been shown theoretically that the spiral fre-
quency is scaled by the mean rotation rate of the circular
Couette flow as follows [28,29]:

ω

m
= Ω , Ω = α(η)Ωi τν (4)

where the function α is given by [28,29]:

α(η) = − 2η2

1 − η2
(
1
2

+
ln η2

1 − η2
). (5)
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Fig. 14. Comparison of experimental studies: Snyder and
Karlsson (η = 0.958), Sorour and Coney (η = 0.948) with
two oils and our results (η = 0.8).

For our experiment, we have α(η = 0.8) = 0.426 and the
straight line fit of the experimental data in Figure 10 gives
α(η = 0.8) = 0.428. For Snyder and Karlsson system η =
0.958 and α(η) = 0.486, this value is very close to values
α � 0.5 reported in their article (see their Tab. 4). The
pattern time-averaged frequency does not depend on the
axial position. The time-averaged wavenumber is sensitive
to the position because the amplitude is modulated in
space which can be considered as a consequence of the
control parameter ramp [30].

The stability of the Couette flow with a radial temper-
ature gradient has been subject of few theoretical studies
for different values of the radius ratio [10,31] and infinite
system and of numerical studies for η = 0.5 and aspect
ratio Γ = 10 [26]. Since the theoretical studies used infi-
nite aspect ratio system and the numerical studies used
the periodic boundary conditions, they could not recover
any specific behavior of the pattern near z = 0 or z = L.
This behavior should be recovered by numerical simula-
tions with real physical boundary conditions.

5.3 Wall mode

The pattern observed in our experiment is composed of
spirals drifting along the axial direction. Most of its prop-
erties can be described by the 1-d complex Ginzburg-
Landau equation for the envelope amplitude A(t, z) with
homogenous boundary conditions:

τ0(
∂A

∂t
+ vg

∂A

∂z
)=µA + ξ2

0(1 + ic1)
∂2A

∂z2
− g(1 + ic2)|A|2A

A(z = 0) = A(z = L) = 0

where τ0 is the characteristic time of the amplitude, vg is
the group velocity, ξ0 is the coherence length, g is the Lan-
dau saturation constant, c1 is the linear dispersion coeffi-
cient, and c2 represents the nonlinear frequency detuning.
For some systems e.g. Rayleigh-Bénard, Couette-Taylor,
these coefficients can be computed in numerical simula-
tions [32,33,36] or estimated in experiments [37,38], but



452 The European Physical Journal B

Table 2. Comparison of characteristics of some experiments.

Authors η Γ Fluid Pr Gr

Snyder
et al. [8]

0.958 337 water 4.35 [−360; 360]

0.958 337 water 5.79 [−360; 360]

0.958 337 1/3 18.81 [−360; 360]

glycerine-

2/3

water

Sorour
et al. [9]

0.911 60 oil A [300;500]

0.911 60 oil B [500;860]

0.948 102 oil A [300;500] [−3.5;0]

0.948 102 oil B [500;860] [−3.5;0]

Ball
et al. [7]

0.437 31.4 air 0.7

0.565 52.53 air 0.7

0.656 77.20 air 0.7

Our experiments 0.8 114 water 5.5 [−810; 965]

for the Couette-Taylor flow with a radial temperature gra-
dient, no data are available to our best knowledge.

For small values of the control parameter, the ampli-
tude profile can be represented by the function A(z) =
A0e

−αz sin(πz/L) where A0 is the initial amplitude of the
wave, the coefficient α = τ0vg/[2ξ2

0(1 + c2
1)] [11,39]. To-

bias et al. have called this solution a wall mode. We have
determined experimentally the coefficient α. Following the
analysis of Tobias et al., we have assumed that the thresh-
old µ corresponds to absolute instability and used the re-
lation µ = τ0vg/[2ξ2

0(1 + c2
1)]. From α and µ, we have

deduced τ0vg. The maximal amplitude has been used as a
measure of the coefficient g. The frequency variation with
µ has allowed for determination of the ratio c2/τ0. Using
the behavior of the amplitude near the wall z = 0, we
have measured the pattern coherence length ξs and from
the approximate relation ξs = ξ2

0/(τ0vg) given in [40] we
deduced an estimate of ξ0 and then c1 from the value of α.
The obtained data are presented in the Table 3.

The behavior of the wall mode can be analyzed fol-
lowing the analysis of Zielinska et al. [41] of the global
mode. We plotted in Figure 15 the A/Amax vs. z/zmax.
We have observed that the near-wall behavior is almost
described by one curve while away from the wall, i.e. in
the zone z > zmax, there are separate curves that devi-
ate each from another as µ increases. This deviation is
induced by the different behavior of zmax and zf = Lp as
a function of µ: zmax ∼ µ1/2 and zf ∼ µ. This is a conse-
quence of the ratio between the thermal gradient and the
centrifugal force. In fact the front is due to the presence of
the axial velocity induced by radial temperature gradient,
while the inner cylinder rotation will reinforce the effect
of the centrifugal force, so increasing the appearance of
the vortices in the whole system.

This kind of spiral patterns drifting in 1-direction have
been observed in other hydrodynamical systems such as

Table 3. Coefficients of Ginzburg-Landau for a pattern with
Gr = −420.

g τ0vg ξ0 c2/τ0 c1

1.86 ± 0.24 −4.56 3.42 −2.8 0.98

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

z /zmax

A /Amax

µ=0.03
µ=0.06

µ=0.08

Fig. 15. Amplitude profiles A/Amax as a function of z/zmax

of the traveling waves for GR = −420 and different values of
µ.

the Couette-Taylor flow with counterrotating cylinders [2]
or the Taylor-Dean [33–35].

We have shown that the convection cell induced by
the radial temperature gradient was responsible of the ex-
istence of the wall mode. A similar situation was observed
for the hydrothermal waves generated in bounded chan-
nel submitted to a horizontal temperature gradient [42] in
which there is also a convection cell.
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5.4 Comparison with the Couette-Taylor system
with a through flow

The investigated flow system has some analogy with the
Couette-Taylor with an axial through flow [12–15,17,18].
In fact, the studied flow is composed of a circular Cou-
ette flow combined with a convection cell ascending near
the hot wall and descending near the cold one. Far from
the top and bottom boundaries, the base axial flow has a
nodal surface separating the ascending from the descend-
ing flows, these two parts of the flow can be considered
as axial flows in opposite directions. In order to compare
with the Couette-Taylor system with a through flow whose
one of the control parameter is the axial Reynolds num-
ber defined with the flow rate, we have used instead of the
Grashof number (i.e. thermal Reynolds number) the axial
Reynolds number expressed as follows:

Re =
Wmaxd

ν
(6)

where Wmax = F (η, rmax)Wa is the maximum velocity of
the axial flow. The value of F (η, rmax) is given in Ta-
ble 1 and for our experimental configuration, we have
Re = 8.4×10−3 Gr. We have limited our analysis to small
values of the axial Reynolds number Re < 8 (i.e. weak
axial flow), so the buoyancy forces act as disturbances of
the flow but are not sufficient enough to compete with
the centrifugal force, responsible for the Taylor vortices.
Figure 16 represents the averaged base flow position some-
times called healing length Lh as a function of the inverse
of the reduced Taylor number. The laminar base flow dis-
appears with the Taylor number in favor of the spiral vor-
tex flow. The slope increases with the Grashof number
(Fig. 16).

For Couette-Taylor with axial flow [13–15,17,18,43],
the pattern occurred first at the outlet and was composed
of propagating Taylor vortices (PTV) while the flow was
still laminar at the inlet. So there is an interface separat-
ing the pattern state from the laminar state. This interface
fluctuates in the convectively unstable region due to a spa-
tial amplification of a permanent noise at the inlet [16].
The laminar zone was characterized by the healing length
Lh which was found to diverge with the group velocity
and so allowed for the determination of the onset of the
regime of absolute instability. Increasing the rotation rate
lead to the pattern filling the whole system.

In our system, the pattern is composed of spirals i.e.
traveling non axisymmetric helicoidal vortices (Fig. 17)
while the PTV were traveling but axisymmetric. The heal-
ing length of the pattern in both systems increases linearly
with ε−1 (Fig. 16).

The interface between the PTV and the laminar state
was described as fluctuating and therefore the pattern was
referred to as “noise induced structures”, we were not able
to state this type of behavior for the interface in our case.
We have found that the radial temperature gradient desta-
bilizes the circular Couette flow while the axial flow stabi-
lizes it. The analogy between these two systems needs for
a further investigation, in particular, we need for a deep

0

0.5
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2.5

3

3.5

4

4.5

-30 -25 -20 -15 -10 -5 0

1/ ε

L h -810 -600 -420
-290 320 485
650 835 965

Gr

0

4

8

12

16

-1000 -500 0 500 1000

Gr

dL h/dε −1

Fig. 16. Variation of the averaged base flow position Lh (part
without rolls) vs. the inverse of the criticality parameter de-
fined as ε = (Ta − Tac(Gr = 0))/Tac(Gr = 0) for different
Grashof numbers. Variation of the slope dLh/d(1/ε) vs. the
Grashof number.

Fig. 17. Space-time diagrams obtained for Re = −3.5 and for
different values of µ.

analysis of the convective and absolute instability regime
in our case.
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Table 4. Best fit coefficients of the critical parameters as func-
tions of the axial Reynolds number. The starred quantities are
the critical values for which the pattern fills the whole system.

Xc a1 a2

Tac −3 × 10−2 ± 2 × 10−3 3.10−4 ± 4 × 10−5

Ta∗
c −0.013 ± 6 × 10−4 0

qc −1.7 × 10−2 ± 2 × 10−3 1.2 10−4 ± 5 × 10−5

q∗c −1.3 × 10−2 ± 2 × 10−3 8.10−5 ± 4 × 10−5

Yc b1 b2

fc 0.91 ± 0.05 8.4 × 10−3 ± 1 × 10−3

f∗
c 0.69 ± 0.05 −4.2 × 10−3 ± 1 × 1 10−3

5.5 Variation of critical parameters with Re

We have observed that the spiral helicity depends on the
sign of GrTa ∼ ReTa, a similar conclusion was obtained
by Ali and Weidman [10].

Analysis of a dependence of critical parameters with
Gr (Figs. 6, 7–8) suggests the existence of a symmetry
with respect to the sign of the temperature gradient. We
have investigated the behavior of the critical parameters
as function of the axial Reynolds number Re defined by (7)
and we have found that Tac, Ta∗

c , qc, q
∗
c are even functions

of Re

Xc(Re) = Xc(0)(1 + a1Re2 + a2Re4) (7)

while fc, f
∗
c are odd function

Yc(Re) = b1Re + b2Re3 (8)

The best fit coefficients are presented in the Table 4.
Similar results were obtained for the Couette-Taylor

system with axial flow in experiments and in numerical
simulations [13,17,36].

6 Conclusion

We have investigated the effects of a weak radial temper-
ature gradient on the stability of the Couette flow. We
have found that the radial temperature gradient amplifies
the destabilization of the base flow. A pattern of travel-
ing inclined vortices (spirals) occurred near the bottom of
the annular cavity for the rotation frequency below the
threshold of the Taylor vortices. The pattern increases in
size with the increase of the control parameter before in-
vading the whole cavity. For a range of values of the con-
trol parameter Ta, the spiral pattern coexists with the
laminar flow. The size of the laminar flow, i.e. the healing
length decreases with Ta, the slope of this variation de-
pends on Gr. A similar behavior has been observed in the
Couette-Taylor system with an axial flow. We have also
noticed that the radial heating increases the axial size, the
inclination and the drift velocity of vortices.

The spiral pattern observed in this system is a good
candidate for a description by the 1D complex Ginzburg-
Landau equation for which we have determined the coeffi-
cients. The results have been performed for a temperature
difference below |2|◦ C corresponding to an axial Reynolds
number |Re| ∈ [0, 8.5[ in order to consider the radial heat-
ing as a small perturbation. A comparison with noise in-
duced pattern in the Couette flow with axial through flow
has been performed. For larger temperature differences,
there is a strong coupling between the buoyancy and cen-
trifugal effects that leads to new instability modes. Cor-
responding results will be presented elsewhere.
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